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A wiggler-free free electron laser operating in a waveguide is analyzed by using a single particle
treatment. The use of either a TE or a TM mode is shown to enhance the gain for a resonant
frequency much higher than the cyclotron frequency. It is demonstrated that a source of a
submillimeter radiation, based on this analysis, may have output power comparable to that of a

wiggler-type free electron laser.

PACS numbers: 41.70. 4 t, 52.25.Ps, 42.55. —f, 41.80.Dd

I. INTRODUCTION

Considerable effort has been made in recent years to
develop sources of coherent radiation, using relativistic elec-
tron beams moving along helical trajectories. The radiation
wavelength in these so-called “free electron lasers” (FELS}is
the Doppler-shifted pitch of the electron motion A~A4,/23>
where A, is the electron pitch, ¥ =[1 — (v/c)?]~ /% is the
relativistic factor, and v is the velocity of the beam. One class
of such devices is the wiggler-type free electron laser,' where
a periodic magnetic structure forces the electrons into heli-
cal motion. Most of the experimental and theoretical re-
search up to now has been aimed at this type of FEL.

Recently interest arose in a second class of FEL, the
“wiggler-free free electron lasers.” Here the electrons move
on helical orbits in a simple uniform magnetic field (which is
different from the longitudinally® or transversally’ modulat-
ed axial magnetic field). In contrast to the gyrotron,* the
frequency here is the Doppler up-shifted cyclotron frequen-
cy. Chu and Hirshfield® treated the collective interaction
and showed the existence of an unstable growing mode.
They also compared in detail the two bunching mechanisms.
Later it was demonstrated that gain enhancement can be
achieved by a careful choice of the electron momentum dis-
tribution function.®

The various gain mechanisms were clearly explained
using a single-particle approach.”® Ride and Colson’
showed that two sources of bunching exist as a result of the
electron-wave interaction. One source of bunching is the
ponderomotive force due to the product of the perpendicular
component of the electron equilibrium velocity and the mag-
netic vector of the electromagnetic wave. The second source
of bunching is the modulation of the cyclotron frequency
due to the relativistic change of the electron mass. Each one
of the sources causes gain proportional to L * (L is the length
of the amplifier), but acting simultaneously they nearly can-
cel each other. There remains a lower order gain proportion-
altoL’.

In all these previous papers the wave was assumed to
propagate parallel to the direction of the uniform magnetic
field. In a realizable device there must be a waveguide within
which the radiation propagates. Ott and Manheimer pub-
lished a collective theory for a thin slab beam in a paraliel
plate waveguide.® The difference between bunching mechan-
isms for TE and TM modes which we describe below using a
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single-particle model are not easily identified in their treat-
ment. Moreover for practical devices the applicability of the
thin beam model may be limited. The main role of this paper
is to study the influence of the waveguide modes on the inter-
action within the framework of a single-particle approach.
The two aforementioned sources of bunching which cancel
that part of the gain proportional to L * will be shown here
not to do so when, as in the case of waveguide modes, propa-
gation is not exactly parallel to the magnetic field. There is a
residual term proportional to L 3 similar to the case of a
wiggler-type free electron laser. Thus the use of waveguide
modes may enhance the gain. This enhanced gain mecha-
nism can be exploited for the design of a practical device for
submillimeter wave generation or amplification within the
constraints of a single-particle interaction. A practical ex-
ample, similar to that in Ref. 9, will be described based on the
present analysis.

Electron beam sources of radiation for the submilli-
meter portion of the spectrum usually employ high current
densities, where collective effects play an important role.
The present single-particle calculation, by describing clearly
the physical picture, may be used as an important first step
for a self-consistent collective description in future work.

Il. THE EQUATIONS OF MOTION

A relativistic electron beam is guided by a uniform mag-
netic field along a waveguide within which an electromag-
netic wave propagates in the same direction. The gain is
found by calculating the energy loss of the electrons as they
pass through the structure. In doing it, two assumptions are
used. The first is that the intensity of the radiation is big
enough (or the electron density low enough), so that the wave
amplitude remains constant. Secondly we assume that the
intensity of the radiation relative to the magnetostatic field is
small enough to allow the use of a perturbation method to
solve the electron equations of motion. The uniform magnet-
ic field is

B, = Bge,. (1)

For simplicity we choose a waveguide made of two infi-
nite plane parallel plates with distance a between them. The
wave is assumed to be coherent and is either a TE or a TM
mode. Its components are!®
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E;, = —(4'w'/k, c)cos(k, x)cos(Bz — w't),

B! =(A'B/k,)coslk, x)cos(fz — w't), TE mode,
B! = A'sinlk, x)sin(fz — »'t),

(2)
E; =4 'sinlk x)sin(fz — w't),
E ={B/k,}A coslk, x)cos{Bz — w't}, } TM mode.

B = (w'/k,c)d "cos(k, x)cos(Bz — w't).

@' is the wave frequency, x is the coordinate perpendicular to
the plates, and 5 and k&, are the components of the wave
vector related by

/P =k?+B~ {3)
k, will have discrete values

k, =(nm/a) n=12... (4)

The equation of motion of the electron is
d e : €
—(yv)= — —v¥X(B,+B')— —E" (5)
dt mc m

e and m are the electron charge and mass, respectively. The
equation of motion is easily solved by using a rotating system
of coordinates which is better suited to this problem, because
of the helical nature of the electron orbit. A similar system of
coordinates was used previously in dealing with the wiggler-
type FEL problem.'"'? For an electron, whose perpendicu-
lar velocity in the entrance makes an angle ¥, with the nega-

tive x axis, we define 1

RIS
I

(Aw/2k, Jcos(k x)sin[(B + kolz — (T + 70) + Y],
B,= —(B/w)E, B,=B/wlE,
B, = A sinfk x)sin[fz — o(T + 7)],

e,(z,90) = — e, sin(ko z + ¢) + e, cos(koz + ),

e,(2,%y) = — e, coslkyz + ¥p) — e, sin(ky z + ), (6)

es(2,9,) = e,.

k, is chosen later. Let us use the following notations:
u=v/c, r=tc, E=ceE/mc
B=eB/mc’, w=w/c, A=ed'/mc, (7
2 = eB,/mc*.

With these notations Eq. (5) becomes
uy = uylkotts — 02 /7)
u, - 1
— =y + —(usB, — u,B; — E)),
14 14

U, = —u(kous — 2/7)

u, - 1
— 2y — —(u;B, — u,B; + E,), (8)
Y Y
. U, - 1
Uy = — “_37’— — (u1B; — u,B, + E,),
I Y
where
E,; =0, TE mode,
(9)
B, =0, TM mode,

and the dot represents differentiation with respect to 7'. Con-
servation of energy dictates that the energy change of the
electrons equals the work done by the wave fields:

{10}

The components of the wave in the rotating system of co-
ordinates are

y= —wE.

= — (Aw/2k )cos(k, x)cos[(B + kylz — ol + 7o) + o],

TE mode,

E, = ~ (4B /2k,)cos(k x)sin[(B + kolz — (7 + 7o) + Yol

E, = — (4B /2k,)cos(k, x)cos[(B + kolz — (T + 7o) + Yol

B, = —(0/B)E,, B,=(w/B)E,
E, = A sintk x)sin[fz — ot + 74)].

Terms which oscillate with high frequency were omit-
ted keeping only terms which might be resonant. 7 is the
time the electron is at z =0, and 7 is the time which has
passed since then.

The equations of motion (8) are solved perturbatively.
First we find the steady-state electron orbit in the absence of
the wave. Then its perturbed velocity and position are calcu-
lated when the EM fields are taken along the steady-state
orbits. The energy transfer is found only in the second order.

To zero order there are no wave fields:

E=B=0, y=y, (12)
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TM mode.
(11)

1

The equations of motion are
o = tyolkottso — 12 /7,),s

iy = yolkottso — £2/7,), (13)

30 =0.
The third of these equations yields #; = w5, = const. The
definition of our rotating system of coordinates is completed
by setting ko, = {2 /YU, in which case u,, and u,, are con-
stant too. We are still free to choose u,, and u,,, with ¥,

determining the initial velocity of each electron. For our
convenience, u,, is set equal to 0, in which case for each
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electron u, = u,, and e, is always in the direction of the
perpendicular velocity. This means that e; can be different
for different electrons. The electrons are assumed to enter
the waveguide with the same velocity components parallel
and perpendicular to the magnetic field. The solution of Eq.
(13) is therefore

u,,=0, wu,,=const, wu;,=const,

(14)
Yo={1—uly —ul)” "2
The x and z coordinates of the electron position are to zero
order

2o(7) = u3T,

x, — ro sin(kou307 + Yo, (15)
ro = 0/ Kott3o-

7o is the Larmor radius. From now on assume
k ro<l. (16)

Due to Eq. (16) we approximate the amplitude of the wave in
the first-order equations of motion

Xy =(7) =

cos{k, x,) = cos p,,
sin(k, x,) = sinp,, (17)
pe = klxe’

and exclude the excitation of higher cyclotron harmonics.
The fields along the steady-state trajectories are

E o= —(Ey/2)sin(vr + &),
18
E,o= —(Ey/2)cos(vr + &), (18)
where
E,=Aw/k ,
o=A(w/k,)cos ¢, ] TE mode,
§= —wry+ Yy + 7/2,
{19)
Ey,=A(w/k ,
0 (w/k, Jeos g ] TM mode.
§= —awro+ Yo
The “resonance parameter” v is
v=(B+ koluz — @. (20)

The interaction between the electrons and the wave fields is
strongest when the resonance condition is fulfilled, namely
when v~0. In order that the resonant frequency will be high
we require that 8>k, and that u;,>uy,.
Then
ko
o~ —L0 2k 2. (21)
1 —uy,

By, or E,; were omitted because they oscillate with high
frequency. We linearize the electron velocity and energy.

uy, = w(1,7y),

Uy = Uz + Wy(7,7o)s
(22)

U3 = Uz + W(T,7),
Y=o+ I'(1,70)

Next we write the equations of motion for these perturbed
quantities
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r
Wy = KoltagWs + Kottygtizg— + =2 (gltzo — 1),

0 [¢]
w,= — 2o @(guso- 1), (23)
Yo
by = — Y0y B—‘uzo,
Yo Y10
where
g=p8/w, TE mode,

(24)
g=w/B, TM mode.

The third of Eqgs. (23) shows that the longitudinal velocity is
perturbed by two forces. The first term on the right-hand
side of this equation gives rise to the cyclotron maser insta-
bility. Its origin lies in the relativistic change of mass of the
electrons. The second term represents the ponderomotive
force of the magnetic component of the wave on the perpen-
dicular velocity of the electron. This force drives the Weibel-
type instability. A detailed comparison of these two bunch-
ing mechanisms was given by Chu and Hirshfield® and also
by Ride and Colson.” To first order the energy Eq. (10} is

rl = — Uk (25)
The solutions of Eq. (23) using Eq. (25) are

wl=<2E7°)(%)[cos§—cos(vr+§)—wsing‘]

+ ( E )(1 — gUso)T sin &,

2y,
(Zi)( 2 isin vr + €) —sin g 1,
(:m, )( )[s‘“ (7 +¢)—sing], (26)

St =yl — guse) + ko“%og’
S, =1— guso — uy,

S5 = U0(g — U30).
. THE ENERGY GAIN

We solved the equations of motion to first order. This
enables us to calculate the net energy loss of the electrons to
second order, which is the lowest order where it does not
vanish. To second order Eq. (10) is

r=— WiE g — wyEy — uyoky — wiEy, —

U3k,
(27)

For the TM mode E;, = E;, = 0. The net energy transfer is
found by averaging on 7,, the time of entrance ({...) denotes
this averaging). It is in fact averaging on £, which means that
the distribution of ¢y, is irrelevant. This distribution has an
influence on higher cyclotron harmonics; it also can be im-
portant when collective effects become dominant.®

Thus

A. Fruchtman 4291

Downloaded 04 Apr 2005 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



(—w,E,,) = (ﬁ)[(ﬂ)(sin VT — VT COS VT)

8%, V2
+ (1 — guyg)r cos w-],
EZ
(—w,Ey) = ( =0 )( S )sin VT (28)
8%, v

The resonant term in E,, is due to modulations in axial posi-
tion Az.

4z = f w,dT
0

_—_(EEyio)(%)[ —vrsiné —cos(vr + &)+ cos£ .
(29)

Using again the fact that the wave is only a perturbation on
the steady-state orbit, E,, is

E, = (Ezo— )(ﬂ + ko)dz sin(vr 4 &), (30)

and the energy transfer is

cra-(E) )

X (ko + B)(vr cos v — sin vr). (31)
Adding the terms in Eqs. (28) and (31) we obtain the contri-
bution to total energy transfer from the perpendicular part of
the radiation

, E;
() = i(§i>[2(1 — guzo)sin vr — ul,vr cos vr]
v Yo/

1(E3Y , :
+ — | — Juie (e — Bg)(sin v — vr cos v7). (32)
v2 \ 87,
The last expression is different for the two modes
o —Pg=k2/w, TE mode,

(33)
w—fPg=0, TM mode.

For the TE mode there remains the term proportional to 1/
v2, whilst it vanishes for the TM mode. This residual term
proportional to 1/ is the major contribution to the gain.
Thus the gain for the TE mode is

; Ej 2 k% ( sinvr—vrcosvr
(Povee = (22 Juiy X1 ( ) 4
8% w 2
When the wave propagates parallel to the magnetic field
k, = 0 and the gain is the first term in Eq. {32} only, and is
proportional to 1/vinstead of to 1/v. This result, when k  is
0, agrees with Ride and Colson’s result.” Thus the use ofa TE

mode may indeed enhance the gain.

It is interesting to note that in the opposite case, namely
when =0 and k, = @, our result for the TE mode gain
agrees with the gain in the gyrotron.” In fact, being near
cutoff the magnetic component of the wave is in the z direc-
tion only, and the ponderomotive force, which is one of the
two bunching sources, vanishes. The second bunching
source exists alone; this is the cyclotron maser bunching
mechanism. This case does interest us since § = 0 gives no
Doppler up-shift.

Let us now complete our study of the gain of the TM
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mode. Until now the gain for the TM case due to the work
done on the electrons by the perpendicular fields is low and
proportional to 1/v only. But for this mode there is still the
work done by the axial electric field of the wave.

The work done on the electrons by the axial field is
composed of two terms. The first term is — w;E;, and its
average vanishes since E,, oscillates with high frequency.
The second term is #,5,E5,. E5, contains resonant terms. The
perturbation on the axial field due to the perturbed trajec-
tory is, after linearization

E; = A(cosp )k Ax)sin[(Bu,, — 0)7 — wry].  (35)

High frequency terms were omitted. Only terms linear in Ax
or Az were kept.
Using the rotating coordinate system Ax is

Ax = — AXI Sin(kougoT + %)

— ( Y20 Ax, + sz)cos(koumf + ). (36)

Usg

Equations (35) and (36) yield for E,,
E, = % (cos p, )k, [Ax, cos(vr + &)

- ( 120 Ax, + sz)sin(vr +¢& )]- {37)

Uy

The next step is to calculate the Ax, and Ax,. Using the
identities

e, = kouse,, €= — kousey, (38)
we obtain the equations

Ak, = w, + kottz04x,,

A, = w, — kouzoldx, — 222 4p,, (39)

Uszo

The solutions of these equations (keeping resonant terms
only) are

Ax, 2(2&;0) (lk—()f:)m) [sin(vr+1§/)——sin§ ]’

an=(32 )
2y, kot

X[S.[ cos(vr + &) —cosé +vrsiné ]
)
— (1 — gusp)rsin§ l (40)
Therefore the work done by the axial field is

e (E2) )

% [u2 ( VT oS VT — $in v7 )
20

VZ
(1 —gus) sinvr]' (41)
kousg v
The main contribution to the gain comes from the term pro-
portional to 1/v*. Thus the gain for the TM mode is

() —(1—;—3—)142 ﬁ(vrcosw—sinv*r)
2/T™M 8'}/0 20 ﬁ V2 .
(42)

The gain for both the TE and the TM mode may be
written in a similar form
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. EZ 2 P

(I,):(_o_)u%o_k_i(wcosw sin v7 >, 43)
8%, P V2

P= —w, TE mode,

P=p£ TM mode.

The total energy loss of an electron along the amplifier is
obtained by integrating (I")

(Ay) = L}r dr. (44)

The energy gain of the wave is the energy loss of all the
electrons divided by the energy of the fields at z = 0 across
the plates

{(4y) rmc*N,

Girl=———> (45)

o
where n,and W, are the electron and the initial wave energy
densities, respectively. (47), is the sum of energy changes
across the plates. The electron beam is assumed to fill uni-

formly the gap between the plates.
Thus

x' + a
an,=[ apas,
(46)
. (mC2}2A2 a(i)Z
" e*16m k. )
Writing L = u,, 7 where L is the length of the amplifier, the
gain along the amplifier is

2 kz 2
G(L)= —22 "L ¥ 1 3py9) TE mode,
8 ¢ yw ugo
(47)
kl 2
G(L)= — i&.ﬁ——‘z“ﬂL*F’(m, TM mode,
8 ygo? ui
where F'(0) is the line-shape function
F(6)= (M )
6
o= (48)

2
The gain for the TE mode is higher by the factor (w/f) than
for the TM mode. In our case, far from cutoff f~w, the gain
in both cases is about the same. The form of the gain (47) is
very similar to the form of gain obtained for the wiggler-type
FEL." As a matter of fact we can write a general expression
for the gain in these devices.

wz
G= ( SC;;’ )17::%01, *F(6),
o

TwreL = Ko,

Nre =k 1 /oui,

New =k 1/0°u3,. (49)
WFEL denotes wiggler-type FEL.

The gain in the proposed wiggler-free FEL is decreased
relative to the wiggler-type by the factor

Gre ki ko

(ky "0)2~ (50)

3 2
Gwrer wkgu3, WUz Uszg
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Since ko/wu3, 2 1and (k, 7o) <1 this last ratio is smaller than
1. The gain here, even though enhanced relative to the case
without waveguide, is still small relative to the case where
one uses the wiggler. Yet the advantages gained by the sim-
plicity of the magnetic configuration and the possible use of
large interaction volume could outweigh the somewhat
smaller gain in many situations.

IV. DISCUSSION

Here we sketch a possible practical device based on the
ideas described hitherto.

A magnetron injection gun emits an electron beam into
a hollow coaxial cylindrical waveguide. The inner and outer
radii are 10 and 13 cm, respectively. Since the gap 3 c¢m is
small relative to each radius our analysis of the two infinite
plane parallel plates may be applied here. The electron beam
fills the waveguide uniformly [in contrast to the case in Eq.
(9)]. A radiation of wavelength 785 um is launched into the
waveguide. The fourth mode has &, = 4.2 cm™". The elec-
trons are injected with y, = 5 (energy of 2 MeV). They enter
with perpendicular velocity u,, = 0.1. We apply a uniform
magnetic field of 16.5 kG which yields k, = 2 cm ™. Follow-
ing Eq. (21) the above wavelength is resonant. &, r,is 0.2 and
obeys the condition (16). For a gain of 10% the required
current density is 6 A cm? or a total current of about 1.2 kA.
Other modes are not excited for L~100 cm since
AvL =ABL, BAB =k, Ak,, and Ak, =n/a yield
AvL = (k, /B)(m/a)L > . In order to satisfy the resonance
condition for gain, 4vL should be less than 27, where Av is
due to the spread in energy and angle in the initial electron
beam. From the definition of v [Eq. (20)] it follows that
Aa/altiga=u,,/u,) should be less than A /Lu%,, and 4y/y
less than 1/N{=2a/k,L ).

We now compare the proposed device to a wiggler-type
FEL. Imagine that the electrons in the wiggler-type FEL
move on similar helical orbits. By Eq. (49) the current den-
sity needed is 0.6 A/cm? only. On the other hand when
ko =2 cm™' the pitch of the wiggler is 3.1 cm. Considering
that the desired wiggler-field is only at a radius of less than
0.3 cm,'? the volume of interaction has a cross section of 0.3
cm?. In our device it is much bigger, about 200 cm? so that its
power output would undoubtedly be larger. In addition, the
current required to create the wiggler-field (320 G) is about
15 kA. In view of these facts the advantage of the wiggler-
type FEL on the proposed device is not clear.

In summary, we have demonstrated the possibility of
operation of a novel source of submillimeter radiation. It is
built simply from a waveguide immersed in an intense uni-
form magnetic field in which a relativistic electron beam
interacts with one of its modes. By amplifying the Doppler-
shifted electron cyclotron frequency, it becomes, in terms of
its gain and its simplicity, a viable source of submillimeter
radiation.
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